T

Klik Spoiler Berikut:

Senin, 28 Oktober 2013

Pneumatik


Pengertian Pneumatik
Pneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbang-an. Orang pertama yang dikenal dengan pasti telah menggunakan alat pneumatik adalah orang Yunani bernama Ktesibio. Dengan demikian istilah pneumatik berasal dari Yunani kuno yaitu pneuma yang artinya hembusan (tiupan). Bahkan dari ilmu filsafat atau secara philosophi istilah pneuma dapat diartikan sebagai nyawa. Dengan kata lain pneumatik berarti mempelajari tentang gerakan angin (udara) yang dapat dimanfaatkan untuk menghasilkan tenaga dan kecepatan.


Gambar 2.1 Pneumatic Sircuit

Pneumatik merupakan cabang teoritis aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai (device) dan sebagainya, tetapi juga aksi dan penggunaan udara mampat. Udara yang dimampatkan adalah udara yang diambil dari udara lingkungan yang kemudian ditiupkan secara paksa ke dalam tempat yang ukurannya relatif kecil.
Pneumatik dalam pelaksanaan teknik udara mampat dalam industri (khususnya dalam teknik mesin) merupakan ilmu pengetahuan dari semua proses mekanis dimana udara memindahkan suatu gaya atau suatu gerakan. Dalam pengertian yang lebih sempit pneumatik dapat diartikan sebagai teknik udara mampat (compressed air technology). Sedangkan dalam pengertian teknik pneumatik meliputi : alat-alat penggerakan, pengukuran, pengaturan, pengendalian, penghubungan dan perentangan yang meminjam gaya dan penggeraknya dari udara mampat. Dalam penggunaan sistem pneumatik semuanya menggunakan udara sebagai fluida kerja dalam arti udara mampat sebagai pendukung, pengangkut, dan pemberi tenaga.
Adapun ciri-ciri dari para perangkat sistem pneumatik yang tidak dipunyai oleh sistem alat yang lain, adalah sebagai berikut :
1)   Sistem pengempaan, yaitu udara disedot atau diisap dari atmosphere kemudian dimampatkan (dikompresi) sampai batas tekanan kerja tertentu (sesuai dengan yang diinginkan). Dimana selama terjadinya kompresi ini suhu udara menjadi naik.
2)   Pendinginan dan penyimpanan, yaitu udara hasil kempaan yang naik suhunya harus didinginkan dan disimpan dalam keadaan bertekanan sampai ke obyek yang diperlukan.
3)   Ekspansi (pengembangan), yaitu udara diperbolehkan untuk berekspansi dan melakukan kerja ketika diperlukan.
4)   Pembuangan, yaitu udara hasil ekspansi kemudian dibebaskan lagi ke atmosphere (dibuang).
Semua sistem yang menggunakan tenaga yang disimpan dalam bentuk udara yang dimampatkan untuk menghasilkan suatu kerja disebut dengan sistem pneumatik. Dalam penerapannya, sistem pneumatik banyak digunakan sebagai sistem automasi. Dalam kaitannya dengan bidang kontrol, pemakaian sistem pneumatik sampai saat ini dapat dijumpai pada berbagai industri seperti pertambangan, perkeretaapian, konstruksi, manufacturing, robot dan lain-lain. Tenaga fluida adalah istilah yang mencakup pembangkitan, kendali dan aplikasi dari fluida bertekanan yang digunakan untuk memberikan gerak.
Berdasarkan fluida yang digunakan tenaga fluida dibagi menjadi pneumatik, yang menggunakan udara serta hidrolik yang menggunakan cairan. Dasar dari aktuator tenaga fluida adalah bahwa fluida mempunyai tekanan yang sama ke segala arah. Pada dasarnya sistem pneumatik dan hidrolik tidaklah jauh berbeda. Pembeda utama keduanya adalah sifat fluida kerja yang digunakan. Cairan adalah fluida yang tidak dapat ditekan (incompresible fluid) sedangkan udara adalah fluida yang dapat terkompresi (compressible fluid).
Pada umumnya pneumtik menggunakan aliran udara yang terjadi karena perbedaaan tekanan udara pada suatu tempat ke tempat lainnya. Untuk keperluan industri, aliran udara diperoleh dengan memampatkan udara atmosfer sampai tekanan tertentu dengan kompressor pada suatu tabung dan menyalurkannya kembali ke udara bebas. Jenis kompressor terdiri dari dua kelompok antara lain :
1)   Kompressor torak yang bekerja dengan prinsip pemindahan yaitu udara dimampatkan dengan mengisikannya ke dalam suatu ruangan kemudian mengurangi sis pada ruangan tersebut.
2)   Kompressor aliran yang bekerja dengan prinsip aliran udara yaitu dengan menyedot udara masuk ke dalam pada satu sisi dan memampatkannya dengan percepatan massa (turbin). Kompressor aliran meliputi kompressor aliran radial dan kompressor aliran aksial.
Udara sebagai fluida kerja pada sistem pneumatik memilik karakteristik khusus antara lain :
1)   Jumlah udara tidak terbatas
2)
   Transfer udara relatif mudah dilakukan
3)
      Dapat dimampatkan
4)
      Mencari tekanan yang lebih rendah
5)
      Memberi tekanan yang sama ke segala arah
6)
      Tidak mempunyai bentuk tetap (selalu menyesuaikan dengan bentuk yang ditempatinya)
7)
      Mengandung kadar air
8)
      Tidak sensitive terhadap suhu
9)
      Tahan ledakan
10)
  Kebersihan
11)
  Kesederhanaan konstruksi
12)
  Kecepatan
13) 
Keamanan



Penjelasan singkat tentang prinsip dasar pneumatik dengan contoh sederhana dari aplikasi rangkaian pneumatik untuk pengontrolan on-off valve.

Secara definisi sistem pneumatik dapat diartikan sebagai setiap sistem yang menggunakan gas atau udara sebagai fluida/media penggerak ataupun transmisi. Disebut media penggerak karena memang sifat udara yang compressible dapat dikonversi menjadi tenaga mekanik. Contohnya : pompa, piston ataupun valve yang dioperasikan secara pneumatik. Dibandingkan dengan sistem hidraulik yang menggunakan cairan/oli sebagai fluida. Pneumatik memiliki kelebihan diantaranya : bersih dan harga yang murah. Namun besarnya tenaga yang diberikan tidak sebesar tenaga hidraulik. Pada umumnya tekanan kerja udara yang dioperasikan pada sistem penggerak pneumatik sebesar 7 – 10 barg. Aplikasi sistem penggerak pneumatik banyak ditemukan diindustri manufacturing, petrokimia ataupun industri migas.
Sistem pneumatik dapat pula dimanfaatkan sebagai media transmisi sinyal. ISA-S7.4 (Air Pressures for Pneumatic Controllers, Transmitters, and Transmission Systems) melakukan standardisasi rentang untuk sinyal pneumatik : 20 – 100 kPag atau 3 -15 psig.
Pada masa kini sistem instrumentasi yang masih menggunakan sinyal pneumatik sangat jarang ditemukan, selain dikarenakan harga instalasi yang mahal juga adanya waktu tunda (delay) dalam pengiriman sinyal. Saat ini transmisi sinyal pneumatik pada plant lama sendiri banyak digantikan dengan menggunakan transmisi sinyal listrik analog 4-20 mA ataupun komunikasi digital seperti fieldbus/Profibus.
Kecuali pada plant yang telah tua, rangkaian pneumatik sudah jarang ditemukan pada suatu industri migas. Namun pada beberapa aplikasi masih sangat sering dijumpai, misalnya: Wellhead Control Panel, Fusible Loop Panel ataupun Control Panel pada On-Off Valve. Pada beberapa aplikasi, sistem pneumatik kerap kali dikombinasikan juga dengan sistem lainnya seperti sistem elektrik ataupun hidraulik.
Beberapa standard yang digunakan pada perancangan sistem pneumatik diantaranya :
  • API RP 552 (Transmission System)
  • ISA S7.4 (Air Pressures for Pneumatic Controllers, Transmitters, and Transmission Systems)
  • ISA S7.3 (Quality Standard for Instrument Air)
  • ISA S7.7 (Recommended Practice for Producing Quality Instrument Air)
Didalam salah satu bab API RP 552 diatas banyak membahas bagaimana cara pemasangan (instalasi), transmisi dan beberapa issue desain penting lain yang harus diperhatikan.
SIMBOL DAN RANGKAIAN PNEUMATIK
Standard ISO 1219 menjadi acuan dalam standardisasi simbologi untuk komponen pneumatik. Pada umumnya pun supplier atau vendor suatu produk pneumatik mengacu pada standard tersebut untuk mereprentasikan fungsi-fungsi produknya. Beberapa contoh simbol pada sistem pneumatik dapat dilihat pada lampiran yang dapat anda download.
Contoh rangkaian elektro-pneumatik sederhana pada suatu on-off valve control station.
Perhatikan gambar diatas, contoh sebuah rangkaian pneumatik sederhana dalam satu proyek untuk keperluan pengontrolan on-off valve. Deskripsi dari komponen-komponen pneumatiknya sebagai berikut:

Item
Komponen Pneumatik
Fungsi
A
Aktuator
Mengubah tekanan udara menjadi gerakan 1/4 putaran yang digunakan untuk membuka-tutup valve. Didalam aktuator terdapat ruang udara dan pegas (spring). Kesetimbangan gaya pegas dan tekanan udara dimanfaatkan untuk mengontrol gerakan piston.
B
Main Valve
Adalah objek kontrol dari sistem pneumatik. Mekanisme buka-tutup valve diakibatkan oleh gerakan piston didalam aktuator. Untuk kasus ini, main valve dalam keadaan terbuka pada saat aktuator mendapat tekanan pneumatik. Hilangnya tekanan udara/pneumatik pada aktuator menyebabkan main valve tertutup.
1
Two Way Ball Valve
Sebagai isolasi sistem pneumatik terhadap supply udara dari luar. Pada saat sistem pneumatik dioperasikan valve ini harus dalam keadaan terbuka dan ditutup pada saat ada pemeliharaan (maintenance) misalnya ada kebocoran atau penggantian komponen.
2
Air Filter Regulator
Menjaga tekanan supply udara pada harga yang ditentukan (contoh: 5.5 barg) sekaligus membuang (release) kelebihan tekanan. Selain itu juga berfungsi sebagai penyaring udara (ukuran 5 micron) dari partikel debu pengotor. Akumulasi uap air yang terjebak dibuang secara manual (manual drain).
3
Pressure Gauge
Untuk pembacaan / indikasi besarnya tekanan udara yang masuk ke sistem pneumatik. Range yang umum digunakan 0-10 barg ataupun 0 – 14 barg.
4, 10
Check Valve
Mencegah aliran balik udara.
5
3/2 Way Solenoid Valve dengan Manual Reset. Buka-tutup valve diaktuasi oleh signal listrik.
Mengatur buka-tutup aliran udara didalam sistem pneumatik. Fungsinya semacam block and bleed valve. 3/2 way bermakna valve tersebut memiliki 3 port dan 2 position (keadaan). Pada dasarnya kita bebas menghubungkan port mana yang akan kita pilih sesuai design yang kita inginkan, dianalogikan seperti istilah NO/NC pada wiring. Pada kasus ini hanya 2 port yang terhubung dengan tubing sedangkan port lainnya difungsikan sebagai venting port (dipasang bug screen). Dalam keadaan tidak ada arus listrik/sinyal elektrik , jalur aliran udara masuk ke aktuator tertutup (mengakibatkan main valve dalam posisi tertutup). Ketika arus listrik diumpan ke solenoid membuat aliran udara kedalam aktuator tebuka (main valve menjadi terbuka).
Sekali arus listrik hilang, valve kembali keposisi semula (yang disebabkan oleh gaya pegas didalam valve).Yang berakibat tertutupnya aliran udara menuju aktuator dan pada saat yang sama pula sisa tekanan udara didalam tubing (diantara valve dan aktuator) dibuang ke atmosfer melalui venting port. Manual reset berupa tombol yang harus ditekan operator secara manual sesaat setelah valve berubah posisinya. Tanpa melakukan reset, valve tidak akan berubah ke posisi selanjutnya walaupun sinyal listrik telah diumpankan.
6
Bug Screen
Umumnya dipasang pada venting port, gunanya untuk mencegah masuknya serangga pada komponen pneumatik.
7
Flow Control Valve
Mengatur besar-kecilnya aliran udara yang masuk kedalam aktuator.
8
Safety Relief Valve
Jika pressure regulator tidak befungsi dengan baik (fail), maka tekanan udara yang akan masuk kedalam aktuator menjadi tidak terkendali sehingga perlu ditambahkan proteksi untuk membuang kelebihan tekanan tersebut. Aktuator sendiri memiliki batas maksimum tekanan kerja yang umumnya berada pada rentang 8 – 10 barg, tergantung pada jenis /ukuran aktuator yang dipilih.
9
Quick Exhaust Valve
Mempercepat buangan sisa tekanan didalam aktuator ke luar atmosfer. Valve ini hanya berfungsi pada saat tidak ada supply udara kedalam aktuator. Adanya valve ini akan mempercepat respon tutupnya main valve.
11
Silencer
Dipasang pada akhir rangkaian pneumatik yaitu jalur tubing menuju venting ke atmosfer. Gunanya mencegah masuknya benda asing sekaligus mengurangi suara bising akibat buangan tekanan udara dari aktuator.
Bulk material : tubing, fittings adapter, tee dan lain-lain
Menghubungkan komponen pneumatik satu dengan komponen lainnya.
Gambaran diatas hanyalah salah satu contoh sederhana dari aplikasi rangkaian pneumatik untuk pengontrolan on-off valve. Pada kasus lain semisal Wellhead Control Panel, rangkaian pneumatik dikombinasikan dengan rangkaian hidraulik dan elektrik makin menambah rumit rangkaiannya. Namun pada dasarnya sepanjang kita mengetahui fungsi-fungsi dasar (basic function) tiap-tiap komponennya dan main line atau alur utama pneumatik nya akan memudahkan kita memahami keseluruhan mekanisme sistem rangkaian pneumatik tersebut.
Keuntungan dan Kerugian Penggunaan  Pneumatik, pada dasarnya semua kegiatan atau cara pasti ada keuntungan dan kerugian yang akan ditimbulkannya. nah disini ada beberapa keuntungan dan kerugian tentang penggunaan pneumatik pada kehidupan sehari- hari
Kerugian Penggunaan  Pneumatik
Penggunaan udara kempa dalam sistim pneumatik memiliki beberapa
keuntungan antara lain dapat disebutkan berikut ini :
  • Ketersediaan yang tak terbatas, udara tersedia di alam sekitar kita dalam jumlah yang tanpa batas sepanjang waktu dan tempat.
  •  Mudah disalurkan, udara mudah disalurkan/pindahkan dari satu tempat ke tempat lain melalui pipa yang kecil, panjang dan berliku.
  •  Fleksibilitas temperatur, udara dapat fleksibel digunakan pada berbagai temperatur yang diperlukan, melalui peralatan yang dirancang untuk keadaan tertentu, bahkan dalam kondisi yang agak ekstrem udara masih dapat bekerja.
  •  Aman, udara dapat dibebani lebih dengan aman selain itu tidak mudah terbakar dan tidak terjadi hubungan singkat (kotsleiting) atau meledak sehingga proteksi terhadap kedua hal ini cukup mudah, berbeda dengan sistim elektrik yang dapat menimbulkan kostleting hingga kebakaran.
  •  Bersih, udara yang ada di sekitar kita cenderung bersih tanpa zat kimia yang berbahaya dengan jumlah kandungan pelumas yang dapat  diminimalkan sehingga sistem pneumatik aman digunakan untuk industri obat-obatan, makanan, dan minuman maupun tekstil
  •  Pemindahan daya  dan Kecepatan sangat mudah diatur. udara dapat melaju dengan kecepatan yang dapat diatur dari rendah hingga tinggi atau sebaliknya. Bila  Aktuator menggunakan silinder pneumatik, maka kecepatan torak dapat mencapai 3 m/s.  Bagi motor pneumatik putarannya dapat mencapai 30.000 rpm, sedangkan sistim  motor turbin dapat mencapai 450.000 rpm.
  •  Dapat disimpan, udara dapat disimpan melalui tabung yang diberi pengaman terhadap kelebihan tekanan udara. Selain itu dapat dipasang pembatas tekanan atau pengaman sehingga sistim menjadi aman.
  •   Mudah dimanfaatkan, udara mudah dimanfaatkan baik secara langsung misal untuk membersihkan permukaan logam dan mesin-mesin, maupun tidak langsung, yaitu melalui peralatan pneumatik untuk menghasilkan gerakan tertentu.
Kerugian Penggunaan  Pneumatik
Selain memiliki kelebihan seperti di atas, pneumatik juga memiliki beberapa
kelemahan antara lain:
  • Memerlukan instalasi peralatan penghasil udara. Udara kempa harus dipersiapkan secara baik hingga memenuhi syarat. memenuhi kriteria tertentu, misalnya kering, bersih, serta mengandung pelumas yang diperlukan untuk peralatan pneumatik. Oleh karena itu sistem pneumatik memerlukan instalasi peralatan yang relatif mahal, seperti kompressor, penyaring udara, tabung pelumas, pengeering, regulator, dll.
  •  Mudah terjadi kebocoran,  Salah satu sifat udara bertekanan adalah ingin selalu menempati ruang yang kosong dan tekanan udara susah dipertahankan dalam waktu bekerja. Oleh karena itu diperlukan seal agar udara tidak bocor. Kebocoran seal dapat menimbulkan kerugian energi. Peralatan pneumatik harus dilengkapi dengan peralatan kekedapan udara agar kebocoran pada sistim udara bertekanan  dapat ditekan seminimal mungkin.
  •  Menimbulkan suara bising,  Pneumatik menggunakan sistim terbuka, artinya udara yang telah digunakan akan dibuang ke luar sistim, udara yang keluar cukup keras dan berisik sehingga   akan  menimbulkan suara bising terutama pada saluran buang. Cara mengatasinya adalah dengan memasang peredam suara pada setiap saluran buangnya.
  •  Mudah  Mengembun,  Udara yang bertekanan  mudah mengembun, sehingga sebelum memasuki sistem harus diolah terlebih dahulu agar memenuhi persyaratan tertentu, misal kering, memiliki tekanan yang cukup, dan mengandung sedikit pelumas agar mengurangi gesekan pada katup-katup dan aktuator. Diharapkan setelah diketahuinya keuntungan dan kerugian penggunaan udara kempa ini kita dapat membuat antisipasi agar kerugian-kerugian ini dapat dihindari.






Tidak ada komentar:

Posting Komentar